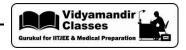


Miscellaneous Exercise Question Bank

1.	What concentration of ${\rm CO}_2$ be in equilibrium with 0.025 M CO at 120°C for the reaction :											
	$FeO(s) + CO(g) \Longrightarrow Fe(s) + CO_2(g)$											
	if the	value of $K_c = 5$	5.0 ?	_								
	(A)	0.125 M	(B)	0.0125 M	(C)	1.25 M	(D)	12.5 M				
2.	For th	For the reaction $A(g) + 3B(g) \rightleftharpoons 2C(g)$ at 27°C, 2 moles of A, 4 moles of B and 6 moles of C are										
	present in 2 litre vessel. If K_c for the reaction is 1.2, the reaction will proceed in :											
	(A)	forward direc			(B)	backward di						
	(C)	neither direc	tion		(D)	none of thes	e					
3.	When	sulphur (in th	e form of	S ₈) is heated a	at tempera	ature T, at equi	librium, 1	the pressure of S	δ_8 falls by			
	30%	from 1.0 atm,	because	S ₈ (g) is parti	ially conv	erted into ${ m S}_2($	g). Find	the value of K	p for this			
	reacti	on.							\odot			
	(A)	2.96	(B)	6.14	(C)	204.8	(D)	None of these				
4.	In the	In the presence of excess of $SrCl_2.2H_2O$ the amount of water taken up is governed by $K_p = 10^{12} atm^{-4}$										
	for the following reaction at 273K											
		SrC	${\rm I_2\cdot 2H_2O}$	$(s) + 4H_2O(g) \rightleftharpoons$	\Longrightarrow SrCl ₂	·6H ₂ O(s)						
	What	is equilibrium	vapour p	ressure (in torr)	of water i	n a closed vess	el that co	ntains $\operatorname{SrCl}_2 \cdot 2 \operatorname{F}$	I ₂ O(s)?			
	(A)	0.001 torr	(B)	10^3 torr	(C)	0.76 torr	(D)	1.31 torr				
5.	For the reaction $2A(g) \rightleftharpoons B(g) + 3C(g)$, at a given temperature, $K_c = 16$. What must be the volume of											
				nole each of A, I								
	(A)	1	(B)	$\frac{1}{2}$	(C)	1	(D)	None of these				
		4		2								
6.	At 87	At 87°C the following equilibrium is established.										
		$H_2(g) + S(s) \rightleftharpoons H_2S(g); K_c = 0.08$										
		If 0.3 mole hydrogen and 2 mole sulphur are heated to 87°C in a 2L vessel, what will be the										
		ntration of H ₂ S										
	(A)	0.011 M	(B)	0.022 M	(C)	0.044 M	(D)	0.08 M				
7.	When heated, ammonium carbamate decomposes as follows:											
		$NH_4COONH_2(s) \rightleftharpoons 2NH_3(g) + CO_2(g)$										
	At a c	At a certain temperature, the equilibrium pressure of the system is 0.318 atm. K_p for the reaction is :										
	(A)	0.128	(B)	0.426	(C)	4.76×10^{-3}	(D)	None of these				
8.	The e	quilibrium con	stant K	p for the reacti	ion H ₂ (g)	+ CO ₂ (g) ====	≐ H ₂ O(g) +	-CO(g) is 4.0 a	t 1660°C.			
								x. What is the e				
	conce	ntration of CO	2(g)?						\odot			
	(A)	0.533 M	(B)	0.0534 M	(C)	0.535 M	(D)	None of these				


MEQB 135 Chemical Equilibrium

9.

MEOR					120			0	مدد الدامالا
	equilib (A)	rium ? 20	(B)	30	(C)	50	(D)	None of these	b)
					•			O ₃ remains unrea	
17.	For the	e reaction XCO ₃	(s) 	$\stackrel{\triangle}{=} XO(s) + CO_2(g)$	$K_p = 1.$	642 atm at 727°	C. If 4 m	noles of XCO ₃ (s) w	as put
	(A)	1.49	(B)	1.22	(C)	0.67	(D)	None of these	
		hydrogen mixtur				Р			\odot
16.	For the reaction $SnO_2(s) + 2H_2(g) \Longrightarrow 2H_2O(g) + Sn(\ell)$ calculate K_p at $900K$, where the equilibrium								
	(A)	15	(B)	19	(C)	5	(D)	20	
	Calculate K_p at 247°C for the reaction $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$								
		uilibrium gaseou							\odot
15.	Pure I	PCl ₅ is introduc	ed into	an evacuated ch	amber a	and comes to eq	uilibriur	n at 247°C and 2.	0 atm.
	(A)	0.966 atm	(B)	1.38 atm	(C)	0.0327 atm	(D)	1 atm	
	$H_2(g) + S(s) \rightleftharpoons H_2S(g)$; $K_p = 7 \times 10^{-2}$ If 0.50 mole of hydrogen and 1.0 mole of sulphur are heated to 87°C in 1.0 L vessel, what will be the partial pressure of H_2S at equilibrium?								
14.	At 87°0	C, the following e							
1.4	(A)	4.5	(B)	1.5	(C)	0.6	(D)	None of these	
	equilib	rium. The final c	concentr	ation of AB is 7.5	5 M:				
	If 10 m				of AB a	re placed in a 2 l	itre vess	el and allowed to c	ome to
	2 3 6 6 7 11	$A_2(g) + B_2(g) =$			c, 131 cm			`	_
13.		o.o nine the value of	. ,				(1)		(4
	CO ₂ a	t 700 K is :	(B)	0.6	(C)	0.72	(D)	0.48	b)
	the de	nsity of the gas n				-	_	e degree of dissocia	
12.	COCl	gas dissociation	n accord	ling to the equat	ion, CO	$Cl_2(g) \Longrightarrow CO$	(g) + Cl ₂ (g). When heated to	o 700K
	(A)	3.11 g/litre	(B)	2.11 g/litre	(C)	4.5 g/litre	(D)	None of these	_
		${ m re~of~N_2O_4}$ and ${ m l}$				2			\odot
11.								he density of equil	ibrium
	(A)	15	(B)	19	(C)	5	(D)	20	
	_	nust be added to rium concentrati			ıy conta	шшg з moies ea	acii oi C	O and H ₂ O to ma	ike ZM
10.								is 5. How many m	
10									-1 · · · ·
	(A)	0.25	(B)	0.33	(C)	0.66	(D)	0.5	ic :
	What i	$N_2O_4(g) \rightleftharpoons$			ginal vol	ume is 25% less	than the	at of existing volum	ie ?
						2			
9.	At 273	K and 1 atm, 10	litre of	N_2O_4 decompos	es to NO	Ω_2 according to α	equation		

MEQB 136 Chemical Equilibrium

18. $\text{Fe}_2\text{O}_3(s)$ may be converted to Fe by the reaction $\text{Fe}_2\text{O}_3(s) + 3\text{H}_2(g) \Longrightarrow 2\text{Fe}(s) + 3\text{H}_2\text{O}(g)$, for which $K_c = 8$ at temp. 720°C.

What percentage of the H_2 remains unreacted after the reaction has come to equilibrium?

(A) (B) $\approx 22\%$

 $\approx 34\%$

(C) ≈ 66% (D) $\approx 78\%$

 $AB_3(g)$ is dissociated as $AB_3(g) \rightleftharpoons AB_2(g) + \frac{1}{2}B_2(g)$. 19.

> When the initial pressure of AB_2 is 800 torr and the total pressure developed at equilibrium is 900 torr. What fraction of AB₃(g) is dissociated?

(A) 10% (B) 20%

(C) 25% (D) 30%

At 1000 K, a sample of pure $\,\mathrm{NO}_2\,$ gas decomposes as : 20.

$$2NO_2(g) \Longrightarrow 2NO(g) + O_2(g)$$

The equilibrium constant $\,\mathrm{K}_{\mathrm{p}}\,$ is 156.25 atm. Analysis shows that the partial pressure of $\,\mathrm{O}_{2}\,$ is 0.25 atm at equilibrium. The partial pressure of $\,\mathrm{NO}_2\,$ at equilibrium is :

(A) 0.01

(C) 0.04 **(D)** None of these

21. Pure nitrosyl chloride (NOCl) gas was heated to 240°C in a 1.0 L container. At equilibrium the total pressure was 1.0 atm and the NOCl pressure was 0.64 atm. What would be the value of K_p ?

(A) 1.02 atm

 16.875×10^{-3} atm (B)

 16×10^{-2} atm (C)

(D) None of these

22. At a certain temperature the equilibrium constant $\,\mathrm{K}_{\mathrm{c}}\,$ is 0.25 for the reaction

$$A_2(g) + B_2(g) \rightleftharpoons C_2(g) + D_2(g)$$

If we take 1 mole of each of the four gases in a 10 litre container, what would be equilibrium concentration of $A_2(g)$?

(A) 0.331 M

0.033 M **(B)**

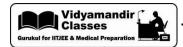
(C) 0.133 M (D) 1.33 M

The vapour pressure of mercury is 0.002 mm Hg at 27°C. K_c for the process $Hg(\ell) \rightleftharpoons Hg(g)$ is : 23.

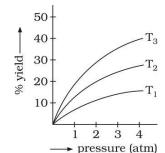
(A) 0.002

 8.12×10^{-5} **(B)**

lacksquare


 $6.48\!\times\! 10^{-5}$ (C)

 1.068×10^{-7} (D)

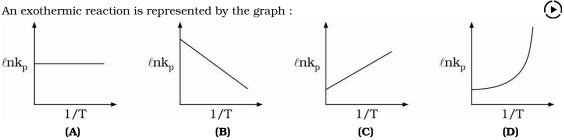

24. Calculate the equilibrium constant (K_c) for the reaction below if they are present at equilibrium 5.0 mole of $\,\mathrm{A}_{2},\,3$ mole of $\,\mathrm{B}_{2}\,$ and 2 mole of $\,\mathrm{AB}_{2}\,$ at 8.21 atm and 300 K

$$A_2(g) + 2B_2(g) \rightleftharpoons 2AB_2(g) + Heat$$

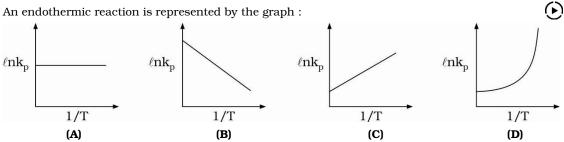
(A) 1.333 **(B)** 2.66 (C) 20 (D) None of these

25. The of $SO_3(g)$ by the preparation reaction $SO_2(g) + \frac{1}{2}O_2(g) \rightleftharpoons SO_3(g)$ is an exothermic reaction. If the preparation follows the following temperature-pressure relationship for its % yield, then for temperatures T_1 , T_2 and T_3 . The correct

(A) $T_3 > T_2 > T_1$


option is:

- $T_1 > T_2 > T_3$ **(B)**
- $T_1 = T_2 = T_3$ (C)
- (D) Nothing could be predicted about temperature through given information
- 26. When 3.06 g of solid NH_4HS is introduced into a 2 litre evacuated flask at $27^{\circ}C$,30% of the solid \odot decomposed into gaseous ammonia and hydrogen sulphide. Calculate $\,\mathrm{K}_{\mathrm{c}}\,$ of reaction.
 - $8.1\!\times\! 10^{-5}$ (A)
- 9×10^{-4} **(B)**
- 1.3×10^{-5} (C)


 \odot

 4×10^{-5} (D)

27. An exothermic reaction is represented by the graph:

28. An endothermic reaction is represented by the graph:

 ${
m K_p}$ has the value of ${
m 10^{-6}atm^3}$ and ${
m 10^{-4}atm^3}$ at 298 K and 323 K respectively for the reaction 29.

$$CuSO_4 \cdot 3H_2O(s) \rightleftharpoons CuSO_4(s) + 3H_2O(g)$$

 $\Delta_r H^{\circ}$ for the reaction is :

(A) 7.7 kJ/mol

(B) $-147.41 \, kJ / mol$

(C) 147.41 kJ/mol **(D)** None of these

30. For the reaction at 300K

$$A(g) \rightleftharpoons V(g) + S(g)$$


(B)

$$\Delta_r H^\circ = -\,30\,\text{kJ} \;\text{/}\; \text{mol,}\; \Delta_r S^\circ = -\,0.1\,\text{kJ} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$$

What is the value of equilibrium constant?

- (A) 0
- 1
- 10
- (D) None of these

(C)

31. Solid $Ca(HCO_3)_2$ decomposes as

$$Ca(HCO_3)_2(s) \rightleftharpoons CaCO_3(s) + CO_2(g) + H_2O(g)$$

If the total pressure is 0.2 bar at 420K, what is the standard free energy change for the given reaction $(\Delta_r G^\circ)$?

(C)

- (A) 840 kJ/mol
- **(B)**
 - 3.86 kJ/mol
- 6.98 kJ/mol
- **(D)** 16.083 kJ/mol
- **32.** The following equilibrium constant were determined at 1120 K:

$$2 \operatorname{CO}(g) \rightleftharpoons \operatorname{C}(s) + \operatorname{CO}_2(g);$$

$$K_{P_1} = 10^{-14} atm^{-1}$$

$$CO(g) + Cl_2(g) \Longrightarrow COCl_2(g);$$

$$K_{P_2} = 6 \times 10^{-3} \, atm^{-1}$$

What is the equilibrium constant $\, \mathrm{K}_{\mathrm{c}} \,$ for the following reaction at 1120 K :

$$C(s) + CO_2(g) + 2Cl_2(g) \Longrightarrow 2COCl_2(g)$$

(A) $3.31 \times 10^{11} \,\mathrm{M}^{-1}$

(B) $5.5 \times 10^{10} \,\mathrm{M}^{-1}$

(C) $5.51 \times 10^6 \,\mathrm{M}^{-1}$

- **(D)** None of these
- 33. One mole of $N_2(g)$ is mixed with 2 moles of $H_2(g)$ in a 4 litre vessel. If 50% of $N_2(g)$ is converted to

 NH_3 according to reaction $N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$, what will be the value of K_c for the following equilibrium?

$$NH_3(g) \xrightarrow{} \frac{1}{2}N_2(g) + \frac{3}{2}H_2(g)$$

- **(A)** 256
- **(B)** 16
- (C) $\frac{1}{16}$
- (D) None of these
- **34.** Assume that the decomposition of \mbox{HNO}_3 can be represented by the following equation

$$4 \operatorname{HNO}_3(g) \Longrightarrow 4 \operatorname{NO}_2(g) + 2 \operatorname{H}_2 \operatorname{O}(g) + \operatorname{O}_2(g)$$

and the reaction approaches equilibrium at 400 K temperature and 30 atm pressure. At equilibrium partial pressure of HNO_3 is 2 atm. Calculate K_c in $\left(\text{mol}\,/\,L\right)^3$ at 400 K:

(Use: R = 0.08 atm - L / mol - K)

(A)

4

(B)

8

- **(C)** 16
- **(D)** 32
- For the equilibrium $LiCl \cdot 3NH_3(s) \rightleftharpoons LiCl \cdot NH_3(s) + 2NH_3(g)$; $K_p = 9atm^2$ at 37°C. A 5 litre vessel contains 0.1 mole of $LiCl \cdot NH_3$. How many moles of NH_3 should be added to the flask at this temperature to drive the backward reaction for completion?

(Use: R = 0.082 atm - L / mol - K)

- **(A)** 0.2
- **(B)** 0.59
- **(C)** 0.69
- **(D)** 0.79

36. For the reaction $C_2H_6(g) \rightleftharpoons C_2H_4(g) + H_2(g)$

 K_P is 5×10^{-2} atm. Calculate the mole per cent of $C_2H_6(g)$ at equilibrium if pure C_2H_6 at 1 atm is passed over a suitable catalyst at 900 K:

- **(A)** 20
- **(B)** 33.33
- **(C)** 66.66
- **(D)** None of these

37 .	$2 \operatorname{NOBr}(g) \rightleftharpoons 2 \operatorname{NO}(g) + \operatorname{Br}_2(g).$									
	If nitrosyl bromide (NOBr) is 40% dissociated at certain temperature and a total pressure of 0.30 atm.									
	K_{p} for the reaction $2 NO(g) + Br_{2}(g) \Longrightarrow 2 NOBr(g)$ is:									
	(A)	45	(B)	25	(C)	0.022	(D)	0.25		
38.	Consid	der the partial de	ecompos	ition of A as 2A(g) 	2B(g) + C(g)			\odot	
				s mixture contair			atm and	300 K. What is	the value	
	of $K_{\rm P}$ for the reaction ?									
	(A)	$\frac{40}{7}$	(B)	1	(C)	$\frac{10}{28}$	(D)	$\frac{28}{10}$		
	()	7	(-)	28	(0)	28	(-)	10		
39 .	At a co	ertain temperatu	re and 2	atm pressure ed	quilibriu	m constant (K _P)	is 25 fo	r the reaction	\odot	
		SO ₂ (g) + NO ₂ (g) ==== SO ₃ (g) -	+ NO(g)					
	Initiall	y if we take 2	moles o	f each of the fo	our gase	s and 2 moles	of inert	gas, what wou	ld be the	
	equilib	orium partial pre	ssure of	NO_2 ?						
	(A)	1.33 atm	(B)	0.1665 atm	(C)	0.133 atm	(D)	None of these		
40.	A reaction system in equilibrium according to reaction $2 SO_2(g) + O_2(g) \Longrightarrow 2 SO_3(g)$ in one litre vessely									
	at a given temperature was found to be 0.12 mole each of SO_2 and SO_3 and 5 mole of O_2 . Another									
	vessel of one litre contains 32g of SO_2 at the same temperature. What mass of O_2 must be added to									
	this vessel in order that at equilibrium 20% of SO_2 is oxidized to SO_3 ?									
	(A)	0.4125 g	(B)	11.6 g	(C)	1.6 g	(D)	None of these		
41.	The eq	ıuilibrium consta	ant K _P f	for the reaction 1	N ₂ O ₄ (g)	\Longrightarrow 2 NO ₂ (g)	is 4.5		\odot	
	The equilibrium constant K_P for the reaction $N_2O_4(g) \rightleftharpoons 2NO_2(g)$ is 4.5 What would be the average molar mass (in g/mol) of an equilibrium mixture of N_2O_4 and NO_2 formed									
	by the dissociation of pure N_2O_4 at a total pressure of 2 atm ?									
	(A)	69	(B)	57.5	(C)	80.5	(D)	85.5		
42 .	A flasl	k containing 0.5	atm pr	essure of A ₂ (g),	some A	AB added into fla	ask whic	ch undergoes die	ssociation	
	A flask containing 0.5 atm pressure of $A_2(g)$, some AB added into flask which undergoes dissociation according to $2 \text{ AB}(s) \Longrightarrow A_2(g) + B_2(g)$ $K_B = 0.06 \text{ atm}^2$?									
	according to $2 \text{ AB(s)} \rightleftharpoons A_2(g) + B_2(g)$ $K_p = 0.06 \text{ atm}^2$? The total pressure (in atm) at equilibrium is:									
	(A)	0.70	(B)	0.6	(C)	0.10	(D)	None of these		
43.	For th	e reaction 2A(g)	+ B(g) =	\longrightarrow C(g) + D(g);	$K_0 = 10^{1}$	¹² . If initial mole	s of A, E	s, C and D are 2	, 1, 7 and	
	For the reaction $2A(g) + B(g) \rightleftharpoons C(g) + D(g)$; $K_c = 10^{12}$. If initial moles of A, B, C and D are 2, 1, 3 moles respectively in a one litre vessel. What is the equilibrium concentration of A?									
	(A)	4×10^{-4}	(B)	$2\!\times\!10^{-4}$	(C)	10^{-4}	(D)	8×10^{-4}	•	
44.		uilibrium consta	ant for th	ne reaction in aq	ueous so	olution				
-				erin \Longrightarrow (H ₃ BC						
	How n	O	0	hould be added	0		O ₃ so th	nat 80% of the	H ₃ BO ₃ is	
	How n	nany moles of gl	ycerın s	hould be added	per litre	60 0.10 M H ₃ B	O_3 so the	nat 80% of the	H_3BO_3 is	

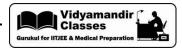
MEQB 140 Chemical Equilibrium

(C)

3.6

(D)

0.08


converted to the boric-acid-glycerin complex ?

(B)

4.52

4.44

(A)

- One mole of SO_3 was placed in a two litre vessel at a certain temperature. The following equilibrium was established in the vessel $2SO_3(g) \rightleftharpoons 2SO_2(g) + O_2(g)$ the equilibrium mixture reacted with 0.2 mole $KMnO_4$ in acidic medium. Hence, K_c is :
 - **(A)** 0.50

(B) 0.25

(C) 0.125

- (D) None of these
- **46.** The equilibrium constant for the ionization of $RNH_2(g)$ in water as

$$RNH_2(g) + H_2O(\ell) \rightleftharpoons RNH_3^+(aq) + OH^-(aq)$$

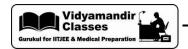
is 8×10^{-6} at 25°C. Find the pH of a solution at equilibrium when pressure of RNH₂(g) is 0.5 bar:

(A) ≈ 12.3

(B) ≈ 11.3

(C) ≈ 11.45

- (D) None of these
- 47. For the reaction $N_2O_4(g) \rightleftharpoons 2NO_2(g)$, which of the following factors will have no effect on the value of equilibrium constant?
 - (A) Temperature


(B) Initial concentration of N_2O_4

(C) Pressure of catalyst

- (D) Pressure
- For the equilibrium at 298 K; $N_2O_4(g) \rightleftharpoons 2NO_2(g)$; $G_{N_2O_4}^0 = 100 \, \text{kJ mol}^{-1}$ and $G_{NO_2}^0 = 50 \, \text{kJ mol}^{-1}$. If 5 mol of N_2O_4 and 2 moles of NO_2 are taken initially in one litre container than which statement are correct.
 - (A) reaction proceeds in forward direction
 - **(B)** $K_c = 1$
 - (C) $\Delta G = -0.55 \text{ KJ}, \Delta G^{0} = 0$
 - **(D)** At equilibrium $[N_2O_4] = 4.84 \,\text{M}$ and $[NO_2] = 2.212 \,\text{M}$
- **49.** Which are true for the reaction : $A_2 \rightleftharpoons 2C + D$?
 - (A) If $\Delta H = 0$; K_p increases with temperature and dissociation.
 - (B) If $\Delta H = +ve$; K_p increases with temperature and dissociation of A_2 increases.
 - (C) If $\Delta H = -ve$; K_p increases with temperature and dissociation of A_2 decreases.
 - **(D)** $K_{P} = 4\alpha^{3} \left[\frac{P}{1 + 2\alpha} \right]^{2}$
- **50.** Select the incorrect statements :

- (A) K_p or K_c are dimension less if pressure or concentration are expressed in standard state.
- (B) The numerical value of K_p changes with experimental conditions, i.e. P, T and C at which equilibrium is attained.
- (C) Active mass of reactant ∞ concentration of reactant.
- (D) Dissolution of $\,\mathrm{NH}_3\,$ in water increases with increasing pressure.

51. At temperature T_1 , the compound $AB_2(g)$ dissociates according to the reaction.

$$2AB_2(g) \Longrightarrow 2AB(g) + B_2(g)$$

With degree of dissociation ,X, which is small compared with unity. Deduces the expression or x in terms of the equilibrium constant k_p and the total pressure p.

 $x = (2kp / p)^{1/3}$ (A)

 $x = (3kp / p)^3$

 $x = (2kp / 2p)^{1/3}$ (C)

- **(D)** $x = (2kp / 3p)^{1/3}$
- **52**. Given value of ΔG° at 25°C for liquid ethanol (-174.9 kJ/mol) and gaseous ethanol (-168.6 kJ/mol). Calculate the vapour pressure of ethanol at 25°C
 - (A) 0.06 atm
- (B) 0.034 atm
- (C) 0.079 atm
- (D) 0.71 atm

- **53**. Unit of equilibrium constant is:
 - $(\text{mol } L^{-1})^{l-n}$
- $(\text{mol } L^{-1})^{\Delta n}$ (B)
- (C) $(atm)^{\Delta n}$
- (D) All of these
- The rate of disappearance of A at two temperature is given by $A \rightleftharpoons B$ **54**.

- $\frac{-d[A]}{dt} = 2 \times 10^{-2} [A] 4 \times 10^{-3} [B] \text{ at } 300 \text{ K}$
- $\frac{-d[A]}{dt} = 4 \times 10^{-2} [A] 16 \times 10^{-4} [B] \text{ at } 400 \text{ K}$ (ii)

From the given values of heat of reaction which are incorrect?

- 3.86 kcal (A)
- (B) 6.93 kcal
- (C) 1.68 kcal
- $1.68 \times 10^{-2} \, \text{kcal}$ (D)
- In the dissociation of PCl_5 as $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ if the degree of dissociation is α at 55. equilibrium pressure P, then the equilibrium constant for the reaction is :
 - (A)

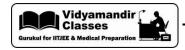
- $K_{P} = \frac{\alpha^{2}}{1 + \alpha^{2}P}$ (B) $K_{P} = \frac{\alpha^{2}P^{2}}{1 \alpha^{2}}$ (C) $K_{P} = \frac{P^{2}}{1 \alpha^{2}}$ (D) $K_{P} = \frac{\alpha^{2}P}{1 \alpha^{2}}$
- For a hypothetical reaction of the kind $AB_2(g) + \frac{1}{2}B_2(g) \rightleftharpoons AB_2(g)$; $\Delta H = -x kJ$ **56**.

More AB3 could be produced at equilibrium by

(A) Using a catalyst

- (B) Removing some of B2
- (C) Increasing the temperature
- (D) Increasing the pressure
- The equilibrium constant for a reaction, $A + B \rightleftharpoons C + D$ is 1.0×10^{-2} at 298 and is 2.0 at 373K. The **57**. lacksquarechemical process resulting in the formation of C and D is:
 - (A) Exothermic

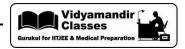
(B) Endothermic


(C) Unpredictable

- (D) None of these
- **58**. The equilibrium constant for a reaction, $A + 2B \rightleftharpoons 2C$ is 40. The equilibrium constant for reaction $C \Longrightarrow B+1/2A$ is:
 - (A) 1/40
- $(1/40)^{1/2}$ **(B)**
- (c) $(1/40)^2$
- **(D)**

59.	The de	ecomposition of	N_2O_4 to	NO ₂ is carried	out at 2	280°C in chloro	form. Wh	en equilibrium is	s reached,	
	0.2 m	ole of ${ m N}_2{ m O}_4$ and	1 2×10	$^{-3}$ mole of NO_2	are pres	ent in a 2L sol	ution. Th	e equilibrium co	nstant for	
	the rea	action N_2O_4 \rightleftharpoons	⇒ 2NO	2 is:					\odot	
	(A)	$1\!\times\!10^{-2}$			(B)	$2\!\times\!10^{-3}$				
	(C)	$1\!\times\!10^{-5}$			(D)	$2\!\times\!10^{-5}$				
60.	For th	ne reaction N ₂ O	O ₄ (g) ←	\implies 2 NO ₂ (g), th	e degree	of dissociation	on at equ	uilibrium is 0.2	at 1 atm	
	pressu	ıre. The equilibr	ium con	stant K _P will be	:				\odot	
	(A)	1/2	(B)	1/4	(C)	1/6	(D)	1/8		
61.	4 mole	e of carbon diox	tide was	heated in 1dm	³ vessel	under conditi	ons whic	h at equilibrium	, undergo	
	25% d	issociation into	carbon r	nonoxide and ox	ygen. Th	e number of m	oles of ca	rbon monoxide p	roduced :	
	(A)	0.5	(B)	1.0	(C)	2.0	(D)	4.0		
62 .	1 mole	e of N ₂ is mixed	d with 3	mole of H_2 in a	a litre co	ntainer. If 50 %	% of N_2 i	s converted into	ammonia	
	by the reaction $N_2(g) + 3H_2(g) \rightleftharpoons NH_3(g)$, then the total number of moles of gas at the equilibrium									
	are:	2.0	2.0	3.0				O	(<u>•</u>)	
	(A)	1.5	(B)	4.5	(C)	3.0	(D)	6.0	O	
63.	For a reaction: $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ at certain temperature, the value of equilibrium constant is 50.									
	If the volume of the vessel is reduced to half of its original volume, the value of new equilibrium constant									
	will be	·:							\odot	
	(A)	25	(B)	50	(C)	100	(D)	Unpredictable		
64.	XY_2 dissociates $XY_2(g) \Longrightarrow XY(g) + Y(g)$. When the initial pressure of XY_2 is 600 mm Hg, the total									
	equilib	orium pressure	is 800	mm Hg. Calcula	ite K for	the reaction.	Assumin	g that the volu	me of the	
	-	n remains uncha	_							
	(A)	50.0	(B)	100.0	(C)	166.6	(D)	400.0		
65.	Consid	der the reaction	A(g) + B	$(g) \rightleftharpoons C(g) + I$	O(g)				\odot	
	Which occurs in one step. The specific rate constant are 0.25 and 5000 for the forward and reverse									
	reaction, respectively. The equilibrium constant is:									
	(A)	2×10^{-4}			(B)	4.0×10^2				
	(C)	5.0×10^{-5}			(D)	2.5×10^{-6}				
66.	For th	e equilibrium sy	ystem 2	$HX(g) \Longrightarrow H_2(g)$	$(g) + X_2(g)$	g) the equilibri	um cons	tant is 1.0×10^{-5}	. What is	
	the concentration of HX if the equilibrium concentration of $\rm H_2$ and $\rm X_2$ are $1.2 \times 10^{-3} \rm M$, and									
	1.2×1	0 ⁻⁴ M respective	ely?						\odot	
	(A)	$12\!\times\!10^{-4}\mathrm{M}$			(B)	$12\!\times\!10^{-3}\mathrm{M}$				
	(C)	$12\times10^{-2}\mathrm{M}$			(D)	$12\!\times\!10^{-1}M$				

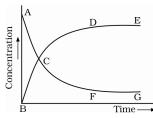
MEQB 143 Chemical Equilibrium


In alkaline solution, the following equilibria exist

67.

	Then, (A)	$\mathbf{K}_1 = \left(1 / \mathbf{K}_2 \right)^2$	(B)	$K_1 = K_2^2$	(C)	$K_1 = 1 / K_2$	(D)	$K_1 = (K_2)^3$		
	Then									
		$NO(g) \rightleftharpoons 1$	$/2N_2(g)$	$+1/2O_{2}(g)$		(ii)				
		$N_2(g) + O_2(g) =$	==== 2 N	IO(g)		(i)				
74 .	${\bf K}_1$ and ${\bf K}_2$ are equilibrium constants for reaction (i) and (ii)									
	(D)	HI is resonance stabilised.								
	(A) (C)									
	that at	698 K is 1.4×10	0^{-2} . This	s implies :					\odot	
73.	The eq	uilibrium consta	ant K for	the reaction	2HI(g) ↓	$\longrightarrow H_2(g) + I_2(g)$	g) at roon	n temperature	is 2.85 and	
72.		uilibrium consta and there is no o 0.10						le of each of W	and X are	
	(A)	0.36	(B)	0.675	(C)	0.45	(D)	0.54		
		SO ₂ . The value				0.45	(T)	0.54	$lackbox{(}lackbox{)}$	
		rium was establ				\Rightarrow 2SO ₂ + O ₂	the vessel	was found to	\sim	
71.	One mole of SO_3 was placed in a litre reaction flask at a given temperature when the reaction									
	(A)	0.43	(B)	0.86	(C)	0.57	(D)	0.2		
70.	In the	Q. 218, the num	ber of m	tole of N_2O_4 in	n 100 g of	the mixture is	:			
	(A)	0.2	(B)	0.4	(C)	0.8	(D)	1.6		
		n the mixture is		S	۷	2 4			\odot	
69.	The va	pour density of a	a mixtur	e consisting of	f NO ₂ an	d N_2O_4 is 38.	3 at 275	K. The number	of moles of	
	(A)	_		3×10^{-5}	(C)	3.3×10^5	(D)	3×10^{-6}		
	rne eq	2 HgCl $_2$ \longrightarrow			паноп еф	umoriuili				
	The ear	HgCl ₂ + Cl ⁻ — uilibrium consta	_	0 2	nation ea	uilibrium				
		HgCl ⁺ + Cl ⁻ —		- 1	5					
68.	Given t	he equilibrium o	constant	s					\odot	
	(A)	132	(B)	7.58×10^{-3}	(C)	1.09	(D)	0.918		
	S_3^{2-} —	\longrightarrow S ²⁻ + 2 S. W	hat is eq	ıuilibrium cons	stant for t	he reaction ;				
	${ m K}_1$ and ${ m K}_2$ have values 12 and 11, respectively.									
	(b)	$S_2^{2-} + S \longrightarrow S_3^{2-}$ equilibrium constant K_2								
	(a)	$S^{2-} + S \longrightarrow$	S_2^{z-} equ	ilibrium const	ant K ₁					

 \odot


MEQB 144 Chemical Equilibrium

- **75.** In a chemical reaction $N_2 + 3H_2 \rightleftharpoons 2NH_3$, at equilibrium point :
 - (A) Equal volumes of N_2 and H_2 are reacting
 - (B) Equal masses of N_2 and H_2 are reacting
 - **(C)** The reaction has stopped
 - (D) The same amount of ammonia is formed as is decomposed into N_2 and H_2
- **76.** $N_2O_4 \rightleftharpoons 2NO_2, K_c = 4$ This reversible reaction is studied graphically as shown in the given figure. Select the correct statements out of I, II and III.
 - I : Reaction quotient has maximum value at point A.
 - II : Reaction proceeds left to right at a point when.

$$[N_2O_4] = [NO_2] = 0.1M$$
.

III: $K_c = Q$ when point D or F is reached.

- (A) I, II
- **(B)** II, III
- (C) I, III
- **(D)** I, II, III
- 77. For the system $A(g) + 2B(g) \rightleftharpoons C(g)$ the equilibrium concentration is :

- $A = 0.06 \, mol \, L^{-1}$; $B = 0.12 \, mol \, L^{-1}$
- $C=0.216\, mol\ L^{-1}$ The $\, K_{eq}^{}\,$ for the reaction is :
- **(A)** 250

(B) 416

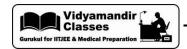
(C) 4×10^{-3}

- **(D)** 125
- **78.** 4 moles of A are mixed with 4 moles of B, when 2 moles of C are formed at equilibrium according to the reaction $A + B \rightleftharpoons C + D$. The value of equilibrium constant is:
 - (A) 4

(B) 1

(C) 1/2

- **(D)** 1/4
- **79.** At certain temperature 50% of HI is dissociated into H_2 and I_2 , the equilibrium constant is:



(A) 1.0

(B) 3.0

(C) 0.5

- **(D)** None of these
- **80.** For reaction $A(g) \rightleftharpoons B(g) + C(g)$. K_p at 400°C is 1.5×10^{-4} and K_p at 600°C is 6×10^{-3} . Which statement is incorrect?
 - **(A)** The reaction is exothermic
 - **(B)** Increase in temperature increases the formation of B
 - (C) Increase in pressure increases the formation of A
 - (D) Decrease in temperature and increase in pressure shift the equilibrium backward

8 mol of a gas AB₃ are introduced into a 1.0 dm³ vessel. It dissociates as 81.

 $2 AB_3(g) \rightleftharpoons A_2(g) + 3B_2(g)$

At equilibrium, 2 mol of A_2 is found to be present. The equilibrium constant for the reaction is:

 $2 \text{ mol}^2 \text{ L}^{-2}$ (A)

 $3 \, \text{mol}^2 \, \text{L}^{-2}$

 $27 \, \text{mol}^2 \, \text{L}^{-2}$ (C)

- $36\,\mathrm{mol}^2\,\mathrm{I}^{-2}$ (D)
- 82. 1 mol of XY(g) and 0.2 mol of Y(g) are mixed in 1L vessel. At equilibrium, 0.6 mol of Y(g) is present. The value of K for the reaction $XY(g) \rightleftharpoons X(g) + Y(g)$ is:

 $0.6 \text{ mol } L^{-1}$ (A)

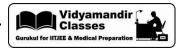
 $0.8 \ mol \ L^{-1}$ (B)

 $0.2 \text{ mol } L^{-1}$ (C)

- $0.4 \text{ mol } L^{-1}$ (D)
- For the reaction $N_2O_4(g) \rightleftharpoons 2NO_2(g)$, the value of K_P is 1.7×10^3 at 600 K. Which of the following 83. is/are correct?
 - (A) The proportions of $\,\mathrm{NO}_2\,$ in the equilibrium mixture is increased by decrease in pressure
 - (B) The standard enthalpy change for the forward reaction is negative
 - Units of K_P are atm $^{-1}$ (C)
 - **(D)** At 600 $\,$ K the degree of dissociation $\,$ N $_2$ O $_4$ decreases by 50% by decreasing the pressure

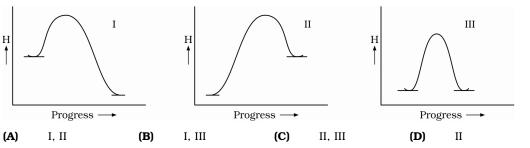
Paragraph for Question No. 84 - 86

Two solids X and Y dissociate into gaseous products at a certain temperature as follows:

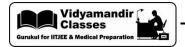

 $X(s) \rightleftharpoons A(g) + C(g)$ and

(ii) $Y(s) \Longrightarrow B(g) + C(g)$

At a given temperature, pressure over excess solid 'X' is 40 mm of Hg and total pressure over solid 'Y(s)' is 60 mm of Hg.


Now, answer the following questions:

- 84. Ratio of K_p for reaction (i) to that of reaction (ii), is:
 - (A)
- (B) 2:3
- (C) 4:9
- (D) 2:1
- 85. The ratio of moles of A and B in the vapour state over a mixture of solids X and Y, is:
 - (A) 2:3
- (B)
- (C)
- (D) 1:1
- The total pressure of gasses over a mixture of solids X and Y is: 86.
 - (A) 100 mm
- 74.84 mm **(B)**
- (C) 50 mm
- (D) 120.74 mm
- The equilibrium pressure of $NH_4CN(s) \rightleftharpoons NH_3(g) + HCN(g)$ is 2.98 atm. Calculate K_p . If $NH_4CN(s)$ 87. is allowed to decompose in pressure of NH_3 at 0.25 atm, calculate partial pressure of HCN at equilibrium.
- For a gaseous phase reaction $A + 2B \rightleftharpoons AB_2$, $K_c = 0.3475L^2 \text{ mole}^{-2}$ at 200°C. When 2 moles of B are 88. lacksquaremixed with one mole of A, what total pressure is required to convert 60% of A in AB2?


 \odot

- **89.** For a reaction $2HI \Longrightarrow H_2 + I_2$, at equilibrium 7.8g, 203.2g and 1638.4g of H_2 , I_2 and HI, respectively were found. Calculate K_c .
- 90. 60 mL of H_2 and 42 mL of I_2 are heated in a closed vessel. At equilibrium, the vessel contains 20mL HI. Calculate degree of dissociation of HI.
- 91. In the dissociation of HI, 20% of HI is dissociated at equilibrium. Calculate K_P for $HI(g) \Longrightarrow 1/2H_2(g)+1/2I_2(g)$
- 92. The value of K_p for dissociation of $2HI \Longrightarrow H_2 + I_2$ is 1.84×10^{-2} . If the equilibrium concentration of H_2 is 0.4789 mole L^{-1} , calculate the concentration of HI at equilibrium.
- 93. 0.96 g of HI were, heated to attain equilibrium $2 \text{HI} \rightleftharpoons \text{H}_2 + \text{I}_2$. The reaction mixture on titration requires 15.7 mL of N/10 hypo solution. Calculate the degree of dissociation of HI.
- **94.** In which case increase in temperature will increase the quantity of the product?

- **95.** The degree of dissociation of PCl_5 at 1 atm pressure is 0.2. Calculate the pressure at which PCl_5 is dissociated to 50%?
- 96. A reaction carried out by 1 mol N_2 and 3 mol of H_2 shows at equilibrium the mole fraction of NH_3 as 0.012 at 500°C and 10 atm pressure. Calculate K_p . Also report the pressure at which mole % of NH_3 in equilibrium mixture is increased to 10.4.
- 97. For $NH_4HS(s) \rightleftharpoons NH_3(g) + H_2S(g)$, the observed, pressure for reaction mixture in equilibrium is 1.12 atm. If 50% of CO_2 reacts, calculate K_p .
- Would 1% CO_2 in air be sufficient to prevent any loss in weight when M_2CO_3 is heated at $120^{\circ}C$? $M_2CO_3(s) \rightleftharpoons M_2O(s) + CO_2(g)$ $K_P = 0.0095 \, atm \ \, at \ \, 120^{\circ}C. \ \, How \ \, much \ \, would \ \, the \ \, partial \ \, pressure \ \, of \ \, CO_2 \ \, have \ \, to \ \, be \ \, to \ \, promote \ \, this \ \, reaction \ \, at \ \, 120^{\circ}C$?

MEQB 147 Chemical Equilibrium

 $\textbf{99.} \qquad \text{NO}_2 \ \ \text{(brown colour gas) exists in equilibrium with } \ \text{N}_2\text{O}_4 \ \ \text{(colourless gas) as given by chemical equation}$

$$2\mathrm{NO}_2\!\rightleftharpoons\!\mathrm{N}_2\mathrm{O}_4$$

Mixture is slightly brown due to existence of $\,\mathrm{NO}_2\,$. If pressure is increased

- (A) colour intensity is increased
- (B) colour intensity is decreased
- (C) colour intensity first increases and then decreases
- (D) no change in colour intensity
- 100. NO and Br_2 at initial pressures of 98.4 and 41.3 torr respectively were allowed to react at 300 K. At equilibrium the total pressure was 110.5 torr. Calculate the value of equilibrium constant, K_p and the standard free energy change at 300 K for the reaction:

$$2 \text{ NO}(g) + \text{Br}_2(g) \Longrightarrow 2 \text{ NOBr}(g)$$

MEQB 148 Chemical Equilibrium